Endocytosis and degradative sorting of NMDA receptors by conserved membrane-proximal signals.
نویسندگان
چکیده
Regulation of the abundance of NMDA receptors (NMDARs) at excitatory synapses is critical during changes in synaptic efficacy underlying learning and memory as well as during synapse formation throughout neural development. However, the molecular signals that govern NMDAR delivery, maintenance, and internalization remain unclear. In this study, we identify a conserved family of membrane-proximal endocytic signals, two within the NMDAR type 1 (NR1) subunit and one within the NR2A and NR2B subunits, necessary and sufficient to drive the internalization of NMDARs. These endocytic motifs reside in the region of NMDAR subunits immediately after the fourth membrane segment, a region implicated in use-dependent rundown and NMDA channel inactivation. Although endocytosis driven by the distal C-terminal domain of NR2B is followed by rapid recycling, internalization mediated by membrane-proximal motifs selectively targets receptors to late endosomes and accelerates degradation. These results define a novel conserved signature of NMDARs regulating internalization and postendocytic trafficking.
منابع مشابه
Reinsertion or Degradation of AMPA Receptors Determined by Activity-Dependent Endocytic Sorting
Both acute and chronic changes in AMPA receptor (AMPAR) localization are critical for synaptic formation, maturation, and plasticity. Here I report that AMPARs are differentially sorted between recycling and degradative pathways following endocytosis. AMPAR sorting occurs in early endosomes and is regulated by synaptic activity and activation of AMPA and NMDA receptors. AMPAR intemalization tri...
متن کاملThe role of ubiquitylation in receptor endocytosis and endosomal sorting.
Ligand-induced activation of transmembrane receptors activates intracellular signaling cascades that control vital cellular processes, such as cell proliferation, differentiation, migration and survival. Receptor signaling is modulated by several mechanisms to ensure that the correct biological outcome is achieved. One such mechanism, which negatively regulates receptor signaling, involves the ...
متن کاملG protein-coupled receptor-associated sorting protein 1 regulates the postendocytic sorting of seven-transmembrane-spanning G protein-coupled receptors.
The largest superfamily of membrane proteins that translate extracellular signals into intracellular messages are the 7-transmembrane-spanning (7TM) G protein-coupled receptors (GPCR). One of the ways in which their activity is controlled is by the process of desensitization and endocytosis, whereby agonist-activated receptors are rapidly and often reversibly silenced through removal from the c...
متن کاملActivity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways.
Kainate receptors (KARs) play important roles in the modulation of neurotransmission and plasticity, but the mechanisms that regulate their surface expression and endocytic sorting remain largely unknown. Here, we show that in cultured hippocampal neurons the surface expression of GluR6-containing KARs is dynamically regulated. Furthermore, internalized KARs are sorted into recycling or degrada...
متن کاملThe Ins and Outs of NMDA Receptors
Although the trafficking of AMPA receptors has received much recent fanfare as a mechanism for synaptic plasticity, NMDA receptors have received less attention in this regard. However, Scott et al. now show that independent regions within the cytoplasmic domains of NMDA receptor type 1 (NR1) and NMDA receptor type 2 (NR2) subunits target NMDA receptors for internalization. Interestingly, the re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 32 شماره
صفحات -
تاریخ انتشار 2004